

Best Buy Corporate Building D (4) <u>Richfield, MN</u>

Technical Assignment II

Jon Aberts Structural Option Professor Boothby

October 24th, 2008

Executive Summary:

This report is an analysis of possible alternate floor systems for Best Buy Corporate Building D found in Richfield, MN. After analyzing the existing system, feasible alternate systems were chosen and considered for the building's floor system. Advantages and disadvantages were derived and studied to determine if each system was worth further investigation.

Existing Floor System: Composite Steel Beam

Advantages of the system are: can be quickly erected, generally low cost, floor depth is comparatively, system is lightweight, smaller column sizes, smaller foundation.

Disadvantage of the system is: requires fireproofing to meet the 2 hour fire-rating necessary.

Floor System #1: One-Way Concrete Slab with Beams

Advantages of the system are: overall depth is decreased by 3.75" from the original system, no spray on fireproofing required.

Disadvantages of the system are: take longer to construct, overall weight in this system is more, increase in column size, increase in foundation size.

Floor System #2: Pre-stressed Pre-cast Concrete Slab

Advantages of the system are: faster to erect, no fireproofing required, removal of one row of columns from the length of the building.

Disadvantages of the system are: overall weight in this system is, increase in column and foundation size, depth of the system is greatly increased, reduction in bay size along the length of the building.

Floor System #3: Post-tensioned Concrete Slab

Advantages of the system are: depth is greatly decreased by 8.75" from the original system, one less row of columns along the width, no fireproofing.

Disadvantages of the system are: more time to erect, overall weight in this system is more than the existing system, column size will increase, foundation size will increase.

General Information:

The Best Buy corporate campus consists of four buildings connected by a central hub. This report focuses on building number four, which is a six story braced frame, steel system. The 304,610 square foot building consists of slab on grade construction with wide flange steel columns supported on concrete piers. Lateral loads are supported by a braced frame system. The exterior of the building consists of an architectural precast curtain wall with integrated ribbon windows. Considering the large amounts of integrated technologies required by Best Buy, there are no other major dead or live loads other than those listed in the provided drawings. The occupancy of the building, as expected, is primarily for office use.

Dead Load: Finishes:

25^{psf}

Live Load: Main Floor:

100^{psf}

Existing System: Composite Steel Beam

The floor system Building D utilizes a composite beam floor framing system. The overall slab is 6¼" using 3" 20 gage composite deck and 3¼" lightweight concrete covering. The first floor uses [#]4 rebar at 18" on center for concrete reinforcing while the remaining floors use 6x6-W2.1xW2.1 welded wire frame. Each internal bay has a typical size of 30'x30' and external bays are typically 30'x42'8". The internal beams are typically W16*26 while the typical external beam is W18*40. Finally, the typical internal girder size is W21*50 and external is W18*35. Material strength is given as 3500 psi for the concrete and A992 50^{ksi} steel for the beams and girders. Spray on fireproofing was used to meet the fire rating required for the building. The floor framing system along with a typical interior bay (shown in blue and rotated 90 degrees) is shown below.

Some of the inherent advantages of the composite beam are that it can be quickly erected and at a generally low cost. Another advantage of the existing system is that the floor depth is comparatively shallow and can accommodate most building height restrictions. The structure for this system is lightweight, allowing smaller column sizes as well as a smaller foundation. One small disadvantage of the system is that it requires fireproofing to meet the 2 hour fire-rating necessary.

Alternate Systems:

System #1: One-Way Concrete Slab with Joists

The first alternate system chosen to analyze was a one-way concrete slab with joists. The 2002 CRSI Handbook tables were used to size the joists. The total load calculated for the system was 190^{psf} over a span of 29'. Using page 8-30 from CRSI, a design of 16" deep ribs with a 4.5" top slab was used resulting in a total depth of 20.5". The system would contain 30" forms with 6" ribs at 36" center to center for the interior span. The reinforcement for the system was designed as [#]5 at 9" on center for the top bars and [#]6 and [#]7 bottom bars. The total weight of the system is calculated to be 87.3^{psf}. A typical bay is shown below.

One of the first advantages to this system is that the overall depth is decreased by 3.75" from the original system, so there would be more room for mechanical and electrical systems. There would also not be any spray on fireproofing required with this system. In terms of building time, this system would likely take longer than the existing system to construct. Another issue to consider is that the overall weight in this system is more than the existing system. This could cause an increase in column size as well as in the foundation, which must be considered.

System #2: Pre-stressed Pre-cast Concrete Slab

The second alternate system chosen to analyze was a pre-stressed pre-cast concrete slab. Charts from Nitterhouse Concrete Products were used to size the bays. The total load calculated for the system was 190^{psf} over a span of 57'6". Using these charts, a 34"x12' double tee was selected. The system requires 18 0.6" diameter strands draped through the section. A typical bay is shown below.

The largest advantage to this system is the speed at which it can be erected. Similar to the one-way slab, there would also not be any spray on fireproofing required with this system. This design also allowed for the removal of one row of columns from the length of the building. Again, the overall weight in this system is more than the existing system, and could cause an increase in column and foundation size. The overall depth of the system is greatly increased, therefore either reducing floor height or increasing building height. The biggest disadvantage is the reduction in bay size along the length of the building. This really makes the system unfeasible.

System #3: Post-tensioned Concrete Slab

The last alternate system selected was a post-tensioned concrete slab. This design allowed for a 15.5" slab spanning a bay size of 57'6"x30'. Using 35^k tensioning and a minimum 6.75" eccentricity, 68 strands are needed along the 30' span. This requires a minimum spacing of 5.3" between strands with is larger than the minimum 2" recommended. No post-tensioning was needed for the short span. A typical bay is shown below.

Some of the advantages to this system are that the overall depth is greatly decreased by 8.75" from the original system, and there is one less row of columns along the width. Even with this reduction of columns in the width, there is no sacrifice in the length as the column spacing stays the same. Once again, there would not be any spray on fireproofing required with this system. This system will however take more time to erect and the overall weight in this system is more than the existing system. Lateral bracing will also be affected as the braced frame is no longer usable. The column size as well as in the foundation size will also increase.

Conclusions:

Existing System: Composite Steel Beam <u>Advantages</u>: Reduced time to erect Large bay sizes Relatively light weight system Lower cost overall Shallow floor <u>Disadvantages</u>: Fireproofing required System #1: One-Way Concrete Slab with Joists

<u>Advantages</u>: No fireproofing Reduced floor depth <u>Disadvantages</u>: Increased system weight Smaller bays Longer to construct Increased column sizes

System #2: Pre-stressed Pre-cast Concrete Slab <u>Advantages</u>: Much faster to erect No fireproofing Removal of a column row <u>Disadvantages</u>: Heavier system More expensive Deeper floor system More columns along length of building

System #3: Post-tensioned Concrete Slab <u>Advantages</u>: No fireproofing Removal of column row Greatly decreased floor depth <u>Disadvantages</u>: Heavier system Increased time to erect More expensive

Appendix

Existing Floor System: Composite Steel Beam

Metal Deck

Minimum as per code: 3" 20 gage United Steel Deck Manual: Try 3" 20 gage Maximum unshored span = 11.43'>10' Slab depth = $6^{1}/_{4}$ " Maximum load = 280^{psf}

Beam A: 30' span

Dead Load = 70^{psf}	Live Load = 100^{psf}							
Load factors = $1.2(70)+1.6(100) = 244^{\text{psf}}$								
$P_u = 244^{psf}$	$w_u = 10(244) = 2.44^{klf}$							
$F'_c = 4^{ksi}$	$f_y = 60^{ksi}$							
$M_u = w_u l^2 / 8 = (2.44 * 30^2) / 8 = 274.5^{\text{ft-k}}$								
Assume a = 1"	$b_{eff} = \min [(l_n = 120"), (30*12/4=90")]$							
$y_2 = 6 - a/2 = 5.5$ "								
Using LRFD table 3-19 use	W14*38 -> $\Phi Mp = 231^{\text{ft-k}}$							
Assuming PNA = 7 (worst ca	ase) -> $\Phi M_p = 339^{\text{ft-k}}, \sum Q_n = 140^k$							
$\sum Q_n = .85 f^{\circ}_c ba \rightarrow a = \sum Q_n / .8$	$85f_{c}^{\circ}b = 140/.85*4*90 = .460$							
$y_2 = 646/2 = 5.77$ "	$\Phi Mp = 341.5^{\text{ft-k}}$							
$\sum Q_n$ /shear stud = 140/9 = 15	.56 -> 32 shear studs							
Beam design: W14*38 with 32 shear studs								

Beam B: 42'6" span

Dead Load = 70^{psf} Live Load = 100^{psf} Load factors = $1.2(70)+1.6(100) = 244^{\text{psf}}$ $P_{u} = 244^{psf}$ $w_u = 10(244) = 2.44^{klf}$ $F'_c = 4^{ksi}$ $f_v = 60^{ksi}$ $M_u = w_u l^2 / 8 = (2.44 * 42.5^2) / 8 = 550.9^{ft-k}$ Assume a = 1" $b_{eff} = \min [(1_n = 120^{\circ}), (42.5 \times 12/4 = 127^{\circ})]$ $y_2 = 6 - a/2 = 5.5$ " Using LRFD table 3-19 use W18*55 $\rightarrow \Phi Mp = 420^{\text{ft-k}}$ Assuming PNA = 7 (worst case) -> ${}^{\phi}M_{p} = 601^{\text{ft-k}}$, $\sum Q_{n} = 202^{k}$ $\sum Q_n = .85f'_c ba \rightarrow a = \sum Q_n / .85f'_c b = 202 / .85*4*120 = .495$ $y_2 = 6 - .495/2 = 5.75$ " $^{\Phi}Mp = 604.5^{\text{ft-k}}$ $\sum Q_n$ /shear stud = 202/9 = 22.44 -> 46 shear studs

Beam design: W18*55 with 46 shear studs

USD

Faculty Advisor: Professor Boothby Structural Option

	Slab Depth 5.50	фМп in.k 52.80	9.00 240	9.50 215	10.00 190		Unifo 11.00		2 Loads 12.00	5, psf* 12.50 110	13.00 100	13.50 90	14.00 80	14.50 75	15.00 70		LRFE
22 gage	6.00 6.25 6.50 7.00 7.25 7.50	59.89 63.43 66.97 74.05 77.59 81.13	275 290 305 340 355 375	245 255 270 300 315 330	215 230 240 270 280 295	195 205 215 240 250 260	175 185 195 215 225 235	155 165 175 190 200 210	140 150 155 175 180 190	125 135 140 155 165 170	115 120 130 140 150 155	105 110 115 130 135 140	95 100 105 115 120 130	85 90 95 105 110 115	75 80 85 95 100 105		1 STUD/FT.
gage	8,00 5.50 6.00 6.25 6.50	88.22 62.81 71.37 75.65 79.92	400 295 335 355 375	360 260 295 315 330	320 230 265 280 295	285 205 235 250 265	255 185 210 225 240	230 170 190 205 215	190 205 150 175 185 195	185 135 155 165 175	135 170 125 140 150 160	140 155 115 130 135 145	130 140 105 120 125 130	115 125 95 110 115 120	105 115 85 100 105 110		NOSTUDS
20	7.00 7.25 7.50 8.00 5.50	88.48 92.76 97.03 105.59 72.04	400 400 400 400 340	365 385 400 400 300	330 345 360 390 270	295 310 320 350 240	265 275 290 315 220	240 250 260 285 195	215 225 235 255 180	195 205 215 235 160	175 185 195 210 145	160 170 175 195 135	145 155 160 175 125	135 140 150 160 110	125 130 135 145 105	the LR Althou	niform Live Loads are based of FD equation $\phi M_n = (I.6L + 1.2D)P_j$ gh there are other load combina- hat may require investigation, th
9 gage	6.00 6.25 6.50 7.00 7.25	82.00 86.97 91.95 101.91 106.89	390 400 400 400 400	345 365 385 400 400	270 305 325 345 385 400	240 275 295 310 345 360	250 265 280 310 325	195 225 240 250 280 295	180 205 215 230 255 265	185 195 205 230 240	170 180 190 210 220	155 165 170 190 200	125 140 150 160 175 185	130 135 145 160 170	120 125 135 145 155	will con equati bendin and the	ntrol most of the time. The on assumes there is no negative or reinforcement over the beams erefore each composite slab is a
gage 1	7.50 8.00 5.50 6.00 6.25 6.50	111.87 121.83 80.96 92.32 98.00 103.68	400 400 385 400 400 400	400 400 345 390 400 400	400 400 305 350 370 395	380 400 275 315 335 355	340 370 250 285 300 320	310 335 225 255 275 290	280 305 205 235 245 260	255 275 185 210 225 240	230 250 170 195 205 220	210 230 155 175 190 200	195 210 140 160 170 180	175 195 130 150 160 165	160 175 120 135 145 155	shown uniforr numbe used to	span. Two sets of values are ι; φM _{nt} is used to calculate the n load when the full required er of studs is present; φM _{no} is o calculate the load when no stud
18	7.00 7.25 7.50 8.00 5.50 6.00	115.04 120.72 126.40 137.76 80.96 92.32	400 400 400 385 400	400 400 400 345 390	400 400 400 305 350	395 400 400 275 315	355 370 390 400 250 285	320 335 355 385 225 255	290 305 320 350 205 235	265 280 290 320 185 210	240 255 265 290 170 195	220 235 245 265 155 175	205 215 225 245 140 160	185 195 205 225 130 150	170 180 190 205 120 135	can be studs i numbe	esent. A straight line interpolation done if the average number of s between zero and the required er needed to develop the "full" ed moment. The tabulated loads
16 gage	6.25 6.50 7.00 7.25 7.50	98.00 103.68 115.04 120.72 126.40	400 400 400 400 400	400 400 400 400 400	370 395 400 400 400	335 355 395 400 400	300 320 355 370 390	275 290 320 335 355	245 260 290 305 320	225 240 265 280 290	205 220 240 255 265	190 200 220 235 245	170 180 205 215 225	160 165 185 195 205	145 155 170 180 190	are ch seldon load de	ecked for shear controlling (it n does), and also limited to a live effection of 1/360 of the span.
22 gage	8.00 5.50 6.00 6.25 6.50 7.00 7.25 7.50	137.76 35.57 40.92 43.68 46.49 52.24 55.17 58.14	400 155 175 190 200 230 240 255	400 135 155 165 175 200 210 225	400 120 135 145 155 175 185 200	400 105 120 130 140 155 165 175	400 90 105 115 125 140 145 155	385 80 95 100 110 125 130 140	350 75 85 90 95 110 115 125	320 65 75 80 85 100 105 110	290 60 65 70 75 90 95 100	265 50 60 65 70 80 85 90	245 45 55 60 70 75 80	225 40 45 50 55 65 65 65 70	205 35 40 45 50 55 60 65	applied been d large c Conce analys	per limit of 400 psf has been to the tabulated loads. This has lone to guard against equaling oncentrated to uniform loads. Intrated loads may require specia is and design to take care of
20 gage	8.00 5.50 6.00 6.25 6.50 7.00 7.25	64.15 42.29 48.61 51.89 55.23 62.07 65.57	280 185 215 230 245 280 295	250 165 190 205 215 245 260	220 145 170 180 195 220 230	195 130 150 160 170 195 205	175 115 135 145 155 175 185	155 105 120 130 135 155 165	140 90 105 115 120 140 145	125 80 95 105 110 125 130	110 75 85 90 100 110 120	100 65 75 85 90 100 105	90 60 70 75 80 90 95	80 55 60 65 70 80 85	70 50 55 60 65 75 80	by sim On the combin	bility requirements not covered ply using a uniform load value. other hand, for any load nation the values provided by the site properties can be used in the tions.
gage 2	7.50 8.00 5.50 6.00 6.25 6.50 7.00	69.10 76.28 48.35 55.60 59.36 63.20 71.08	310 345 220 250 270 285 325	275 305 195 225 240 255 285	245 270 170 200 210 225 255	215 240 150 175 190 200 225	195 215 135 155 170 180 205	175 190 120 140 150 160 185	155 170 110 125 135 145 165	140 155 100 115 120 130 150	125 140 90 105 110 120 135	115 125 80 95 100 105 120	100 115 70 85 90 95 110	90 105 65 75 80 90 100	85 95 60 70 75 80 90	Welde amour If weld	d wire fabric in the required It is assumed for the table values ed wire fabric is not present, t 10% from the listed loads.
e 19	7.25 7.50 8.00 5.50 6.00	75.10 79.17 87.46 54.28 62.43	345 360 400 250 285	305 320 355 220 255	270 285 315 195 225	240 255 280 175 200	215 230 255 155 180	195 205 225 140 160	175 185 205 125 145	155 165 185 115 130	140 150 165 105 120	130 135 150 95 110	115 125 135 85 100	105 110 125 75 90	95 100 115 70 80		o the example problems for the tables.
18 gag	6.25 6.50 7.00 7.25 7.50 8.00	66.67 70.99 79.88 84.42 89.03 98.39	305 325 370 390 400 400	270 290 325 345 365 400	240 260 290 310 325 360	215 230 260 275 290 325	195 205 235 245 260 290	175 185 210 225 235 260	155 165 190 200 210 235	140 150 170 180 190 215	130 135 155 165 175 195	115 125 140 150 160 175	105 115 130 135 145 160	95 105 115 125 130 145	85 95 105 115 120 135		
gage	8.00 5.50 6.00 6.25 6.50 7.00 7.25	98.39 54.28 62.43 66.67 70.99 79.88 84.42 89.03	400 250 285 305 325 370 390 400 400	400 220 255 270 290 325 345 365 400	380 195 225 240 260 290 310 325 360	325 175 200 215 230 260 275 290 325	290 155 180 195 205 235 245 260 290	280 140 160 175 185 210 225 235 260	235 125 145 155 165 190 200 210 235	215 115 130 140 150 170 180 190 215	195 105 120 130 135 155 165 175 195	175 95 110 115 125 140 150 160 175	85 100 105 115 130 135 145 160	145 75 90 95 105 115 125 130 145	70 80 85 95 105 115 120 135		

Floor System #1: One-Way Concrete Slab with Joists

Beam A (exterior): 30' span

Live Load = 100^{psf} Dead Load = 25^{psf} $w_u = 1.2(25) + 1.6(100) = 190^{psf}$ From CRSI joist supporting 190^{psf} spanning 30' 30" forms 6" ribs 16" rib depth 36" center to center distance 4.5" slab depth Reinforcement: $Top = {}^{\#}5 @ 9"$ Bottom = ${}^{\#}6. {}^{\#}7$ This will hold 222^{psf} Total Weight = $30*30*97 = 87.3^{k}$ Beam B (interior): 27'6" span Dead Load = 25^{psf} Live Load = 100^{psf} $w_u = 1.2(25) + 1.6(100) = 190^{psf}$ From CRSI joist supporting 190^{psf} spanning 28' 30" forms 6" ribs 16" rib depth 36" center to center distance 4.5" slab depth Reinforcement: $Top = {}^{\#}5 @ 11"$ Bottom = (2) #7 This will hold 225^{psf} Total Weight = $30*27.5*97 = 80.0^{k}$

Girders: 30' span

Using weight of exterior beams to size girders for uniformity.

 $w_u = 1.2(87.3+25)+1.6(100) = 294.76^{psf}$

 $W_u = 294.76*30 = 8.84^{klf}$

$$\begin{split} M_u &= (8.84^*302)/8 = 994.5^{ft\text{-k}} \\ F'_c &= 4^{ksi} \qquad f_y = 60^{ksi} \qquad \rho = .0124 \qquad d = 20.5\text{--}2.5 = 18^{\prime\prime} \\ Mu &\leq {}^{\phi}M_n = [{}^{\phi}\rho bd^2 f_y(1\text{-}.59\ \rho(f_y/f'_c))](1/12) \\ 994.5^*12 &= .9^*.0124^*bd^{2*}60^*(1\text{-}.59^*.0124^*(60/4)) \\ bd^2 &= 20019.5 \qquad d = 18^{\prime\prime} \qquad b = 61.78^{\prime\prime} \text{ -> } 66^{\prime\prime} \\ W_{uGIRDER} &= (1.2^*66^*30^*150)/144 = 2.48^{klf} \\ M_{uGIRDER} &= 994.5 + (2.48^*30^2)/8 = 1273.5^{ft\text{-k}} \end{split}$$

Steel Design:

$$Mu = {}^{\phi}A_{s}df_{y}(1-.59 \ \rho(f_{y}/f_{c})$$

$$1273.5 = [.9*A_{s}*18*60*(1-.59*.0124*(60/4))]/12$$

$$A_{s} = 17.86 \qquad Use: (8) {}^{\#}18$$

Deflection:

$$I = bh^{3}/12 = (66*18^{3})/12 = 32076 \text{ in}^{4}$$

$$w_{u} = ((8.84+2.48)/12)*1000 = 943.33^{\text{lb/in}}$$

$$\Delta \leq (30*12)/240 = 1.5^{\circ}$$

$$\Delta = (5w_{u}l^{4})/(384\text{EI}) = (5*943.33*30^{4})/(384*3.6\text{E}6*32076) = .000087^{\circ}$$

$$.000087^{\circ} \leq 1.5^{\circ}$$

Best Buy Corporate Building #4	
Richfield, MN	

Faculty Advisor: Professor Boothby Structural Option

psi		te	Span Defi.	10		4.047	4.681	5.386	6.168	7.033	7.985	9.031	10.176	11.427	12.790	14.272	15.878	17.617	19,494											
= 4,000 psi = 60,000 psi		9 8	1	1.93		406* 4	*	*		321*			553 10		+				144 15	For gross section proparties, see Table 8-1. First gross section proparties, see Table 8-1. First provide is for estandard square place above horizoned line (http://mear.sol.com				F	1	.66	19.1	1	1.04	19.1
$f_{c} = f_{f}$		5 # B	00	1.63 1	SPAN	391 4				583 283			195 0		+				0 <u>5</u> 0	nds.		360.			£ 6		19.2	1	88.5	
(HS	spth		5 9	1.36 1	INTERIOR SPAN					203			145						0 80 0	joist e		~") =	(4)		73		19.2	- -	.75	
ca OAD (F	Total De	* 0 * 0	ເດເດ	1.16 1.	Z	236 3				140			1 0 0		-		- <u>0</u> c	>		tapered		flection	CF/SF)		5.63		19.2	1	62	*** 2
ec.	= 20.5*	4 G	* * 4 0 * *	.92 1.		-				- -					-					special		stic de	68		2 2		19.3	·	50.0	
30' Forms + 7' Rib @ 37" cc. ⁽²⁾ FACTORED USABLE SUPERIMPOSED LOAD (PSF)	16" Deep Rib + 4.5" Top Slab = 20.5" Total Dept	* "			-						· · · · ·				84	91	05	27	18	l is for s		+Capacity at elastic deflection = $\ell_n/360$.	PROPERTIES FOR DESIGN (CONCRETE							
7" Rib UPER	+ 4.5*	End	T			* 6.576	7.606	8.752	10.023	11.428	12.975	14.675	16.536	18.569	20.784	23.191	25.802	28.627	31.678	nd load		Capacit	(COP		0.00	10	0.7		0.0	
ns + BLE S	eep Rib	# a	1 4	1.63	NA	346*	354 319	288	280	235	211	130	12	153	137	122	0100	98	0 4 0	1. s; seco	nds.	Ŧ	SIGN	-			19.2	-	1.20	
0" For	16° D	* a	# B # 1	1.41	END SPAN	289	259	232	207	185	185	54	200	115	. <u>6</u>	0 8 °	92.0	85 0	0 4 0	lable 8- bist end equired	$\ell_{\rm m}/21$ for interior spans). Exclusive of bridging joists and tapered ends		OR DE	-			19.2		1.04	
30 TOREE		#=	* *	1.20	Ξ	225	0 661	176	155 0	136	119	5 0	80	0 76	- <u>6</u>	0 g c	- 4 <	>		s, see] tuare jo	and tap		IES F	5			191	+	88.	
FAC		# 0 4 0	50 O	1.00		171	0.64	129 0	122	- 8 c	80	80	· 많 <	40	>					opertie dard sc ection	ans). joists	sacity.	DPERI		ý Si		19.3	1	.75	
US SN		* C	# # 2 0	.83		118	° <u>8</u>	0 8 0	8	- 8 c	°₽ ⊂									ction pro or stan	n/21 for interior spans), aclusive of bridging jois	ear cap	PRC		4	.28	19.3		8	19.2 .152
STANDARD - WAY JOIST JLTIPLE SPA		© Size	\$# \$#		AN		_			_	_				_	_				oss sec oad is f	for inte tive of t	d by sh		DMENT SO MU	FORM	(TAPERED)	N. H	MENT	SQ.IN.)	E E
STANDARD ONE-WAY JOISTS ⁽¹⁾ MULTIPLE SPANS		TOP BARS	BOTTOM BARS	Steel (psf)	CLEAR SPAN	27'-0"	28'-0"	29'-0"	30'-0"	31'-0"	32'-0"	33'-0"	34'-0"	35'-0"	36'-0"	37'-0"	38'-0"	39'-0"	40°-0″	(1) For gr (2) First k (3) Comp		"Controlled by shear capacity.		NEGATIVE MOMENT	STEEL % (UNIFORM)	(TAP	EFF DEPTH, IN. - ICR/IGR	POSITIVE MOMENT	STEEL AREA (SQ. IN.) STEEL %	EFF. DEPTH, IN +ICR/IGR
		1													1					1								+		
			日記録	. 1		188	16	<u></u>	5	1.12	- 522	100	5	2	会	8	4	4	6	1										
00 psi 00 psi		line .	Span Defi.	10		3.938	4.554	5.240	6.001	6.842	7.769	8.767	9.901	11.118	12.445	13.886	15.449	17.141	18.967	ans.										
= 4,000 psi = 60,000 psi		# 6 9 #	# 6 Spa	2.01 (3)	N	-		423* 325* 5.2/ 306*				*	*	~	1.	207 13.8			0 157 18.9(0	end spans.				1 76	1.21	.73	19.1		1.04	19.1
f _c = 6		<u> </u>	1		OR SPAN	* 368*	454*		306	289*	273*	528°	244*	231*	219*		985 o	172		t ends. 1.5 for end spans.		/360.	-	1 44 1 76			260 .300	1	.13 1.04	19.1 19.1 .230 .265
f _c = 6	Depth	6 # 6 9	6 #6 6 #7	2.01	INTERIOR SPAN	359* 368*	412 454* 338* 346*	325*	300* 306"	279 289* 0 347*	254 273*	230 258*	209 244*	190 231*	172 219*	507	140 189	126 172	151 0	red joist ends. 10/18.5 for end spans.		$cn = \ell_{\eta}/360.$	SF) ⁽⁴⁾		66	.60				
f _c = 6	.5" Total Depth	5 #6 #6	5 #6 #6 6 #6 #7	1.70 2.01	INTERIOR SPAN	359* 368*	0 412 454* 299 338* 346*	3/3 423* 318* 325* 330 305*	243 300* 306" 0 307 370*	218 279 289*	197 254 273*	177 230 258*	159 209 244*	190 231*	127 172 219*	155 207	100 140 189	88 126 172	113 157 0 0	al tapered joist ends. viess 2 fc/18.5 for end spans.		deflection = $\ell_n/360$.	CF/SF)	1 44	. 39	.51 .60	19.1		88, 1,	19.1
f _c = 6	tab = 20.5" Total Depth	5 #5 #6 #6 9 11 9	5 #5 #6 #6 5 #6 #6 #7	1.42 1.70 2.01	INTERIOR SPAN	252 331 359* 368*	225 299 338* 346*	0 3/3 423* 269 318* 325* 0 330 305*	178 243 300* 306*	158 218 279 289* 0 0 0 347*	140 197 254 273* 0 0 0 322	124 177 230 258*	109 159 209 244*	95 142 190 231*	82 127 172 219*	71 113 155 207	100 140 189	88 126 172	0 0 0 77 113 157 0 0 0	rr special tapered joist ends. e (thickness ≥ ໃດ/18.5 for end soans.	-	elastic deflection = $\ell_{n}/360$.	.65 CF/SF)	1 01 1 24 1 44	70 .85 .99	.42 .51 .60	234 260		.75 .88 1	19.1 19.1 .199 .230
f _c = 6	5' Top Slab = 20.5' Total Depth	#4 #5 #5 #6 #6 9 11 9 11 9	#4 #5 #5 #6 #6 #5 #5 #6 #6 #7	.93 1.18 1.42 1.70 2.01	INTERIOR SPAN	184 252 331 359* 368*	0 0 0 412 454* 161 225 299 338* 346*	141 201 269 318* 325* 0 0 3/3 423*	123 178 243 300* 306*	06 158 218 279 289*	92 140 197 254 273* 0 0 0 0 322	78 124 177 230 258* 0 0 0 0 255	66 109 159 209 244*	54 95 142 190 231*	44 82 127 172 219*	71 113 155 207	60 100 140 189	50 88 126 172	41 77 113 157 0 0 0 0	and is for special tapered joist ends. zonal line (thickness 2 f.,/18.5 for end spans.	=	acity at elastic deflection = $\ell_{n}/360$.	.65 CF/SF)	1 01 1 24 1 44	70 .85 .99	.42 .51 .60	201 234 260		.09 .11 .13	19.2 19.1 19.1 .168 .199 .230
f _c = 6	+ 4.5° Top Slab =	#4 #5 #5 #6 #6 End 9 11 9 11 9	Span #4 #5 #5 #6 #6 Deft #5 #5 #6 #6 #7 Coeff #5 #5 #6 #7	1 (3) .93 1.18 1.42 1.70 2.01		6.398 184 252 331 359* 368*	7.400 161 225 299 338* 346*	8.516 141 201 269 318* 325* 0 0 0 338* 325*	9.752 123 178 243 300* 306*	11.119 106 158 218 279 289* 0 0 0 0 0 347*	12.625 92 140 197 254 273* 0 0 0 0 322	14.278 78 124 177 230 258* 0 0 0 0 0 0 055	16.089 66 109 159 209 244*	18.067 54 95 142 190 231*	20.222 44 82 127 172 219*	22.565 71 113 155 207	25.105 60 100 140 189 0 0 0 0	27.853 50 88 126 172	0 0 0 77 113 157 0 0 0	econd load is for special tapered joist ends. we horizonal line (thickness ≥ 1,0,18,5 for end spans.	-	apacity at elastic deflection =	.65 CF/SF)	80 1 01 124 1 44	55 70 85 .99	3 .42 .51 .60	9		.51 .62 .75 .88 1 .07 .09 .11 .13	1 19.2 19.2 19.1 19.1 2 .140 .168 .199 .230
f _c = 6	+ 4.5° Top Slab =	5 #6 #4 #5 #5 #6 #6 105 End 9 11 9 11 9	5 #7 Span #4 #5 #5 #6 #6 7 #7 Coeff #5 #5 #6 #6 #7	1.71 (3) .93 1.18 1.42 1.70 2.01		314* 6.398 184 252 331 359* 368*	373 0 412 454* 293* 7.400 161 225 299 338* 346*	274 8.516 141 201 269 318 325 ⁺ 266 141 201 269 318 325 ⁺ 366 0 0 290 358 325 ⁺	256 [°] 9.752 123 178 243 300 [°] 306 [°] 270 [°] 307 306 [°]	240* 11.119 106 158 279 289* 250 0 0 0 0 247*	226* 12.625 92 140 197 254 273* 227 0 0 0 0 322	205 14.278 78 124 177 230 258*	185 16.089 66 109 159 209 244*	167 18.067 54 95 142 190 231*	150 20.222 44 82 127 172 219*	136 22.565 71 113 155 207	121 25.105 60 100 140 189	108 27.853 50 88 126 172	96 30.822 41 77 113 157 0 0	s 8.1, ands: second load is for special tapered joist ends. red above horizonal line (thickness $\geq 0.718.5$ for end spans.	d ends.	+Capacity at elastic deflection = $\ell_{n}/360$.	.65 CF/SF)	151 80 101 124 144	1.04 55 70 85 .99	.63 .33 .42 .51 .60	19.1 19.3 19.2 19.2 19.1 .269 .168 .201 .234 .260		1.20 51 62 .75 88 1 .17 .07 .09 .11 .13	19.1 19.2 19.2 19.1 19.1 .302 .140 .168 .199 .230
f _c = 6	16° Deep Rib + 4.5° Top Slab = 20.5° Total Depth	#5 #6 #4 #5 #5 #6 #6 9 10.5 End 9 11 9 31 9	6 #6 #7 Span #4 #5 #5 #6 #6 6 #7 #7 Deft #5 #5 #6 #6 #7	1.44 1.71 (3) .93 1.18 1.42 1.70 2.01	ND SPAN	305* 314* 6.398 184 252 331 359* 368*	275 293 7.400 161 225 299 338* 346*	247 274^8.516 141 201 269 318* 325* 0 306 0 308 325*	222 256 ⁵ 9.752 123 178 243 300 ⁴ 306 ⁵ 0 277 0 277 123 178 243 300 ⁴ 306 ⁵	200 240° 11.119 106 158 218 279 289° 0 750 0 0 0 0 0 0 247*	179 228 12.625 92 140 197 254 273* 0 227 0 0 0 0 322	160 205 14.278 78 124 177 230 258*	143 185 16.089 66 109 159 209 244* 0 0 0 0 0 770	127 167 18.067 54 95 142 190 231* 0 0 0 231*	113 150 20.222 44 82 127 172 219*	9 135 22.565 71 113 155 207	87 121 25.105 60 100 140 189 0 0 0 0 0 0 0 0	76 108 27.853 50 88 126 172	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ae Teble 8.1. e lotst ends: second load is for special tapered joist ends. e vourieed above horizonal line (thichness ≥ K,∧165, for end saans.	tapared ends.	+Capacity at elastic deflection = $\ell_{n}/360$.	FOR DESIGN (CONCRETE .65 CF/SF)	124 151 80 101 124 144	.85 1.04 .55 .70 .85 .99	.51 .63 .33 .42 .51 .60	234 269 168 201 234 260		1.20 51 62 .75 88 1 .17 .07 .09 .11 .13	19.1 19.1 19.2 19.2 19.2 19.1 19.1 .265 .302 .140 .166 .199 .230
f _c = 6	+ 4.5° Top Slab =	4 年5 年5 年6 年4 年5 年5 年6 年6 1 10.5 9 10.5 End 9 11 9 11 9	5 半6 半6 ※7 Span #44 #5 #5 #6 #6 6 半6 半7 ※7 Deff. #45 #5 #6 #6 #7	04 1.24 1.44 1.71 (3) .93 1.18 1.42 1.70 2.01	END SPAN	240 305* 314* 6.398 184 252 331 359* 368*	214 275 293 7.400 161 225 299 338 345*	10 247 274 8.516 141 201 269 318 325* 0 247 274 8.516 141 201 269 318* 325*	169 222 256* 9.752 123 178 243 300* 366* 0 777 0 778 243 304 376*	149 200 240 ⁴ 11.119 106 158 218 279 289 ⁴	132 179 226* 12.625 92 140 197 254 273* 0 0 227 0 0 0 0 322	116 160 205 14.278 78 124 177 230 258* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	101 143 185 16.089 66 109 159 209 244* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 127 167 18.067 54 95 142 190 231* 0 0 0 0 247	76 113 150 20.222 44 82 127 172 219*	64 99 135 22.565 71 113 155 207	87 121 25.105 60 100 140 189 0 0 0 0 0 0 0 0	76 108 27.853 50 88 126 172	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rthes. see Table 8.1. 1 square post ends second load is for special tapered joist ends. on is not required above horizonal line (thistoress ≥ 1,∞1/bits for end spane.). sis and tapared ends.	$+Capacity at elastic deflection = \ell_0/360.$	FOR DESIGN (CONCRETE .65 CF/SF)	1.06 1.24 1.51 80 1.01 1.24 1.44	73 .85 1.04 .55 .70 .85 .99	.44 .51 .63 .33 .42 .51 .60	208 234 269 .168 201 234 260		1.04 1.20 .51 .62 .75 .88 1 .15 .17 .07 .09 .11 .13	15.1 19.1 19.1 19.2 19.2 19.1 19.1 .230 .265 .302 .140 .168 .199 .230
30" Forms + 6" Rib @ 36" cc. ⁽²⁾ FACTORED USABLE SUPERIMPOSED LOAD (PSF) $f_y = 6$	+ 4.5° Top Slab =	박식 휴5 ጵ5 ጵ6 #4 #5 #5 #6 #6 8 10.5 9 10.5 End 9 11 9 11 9	5 年5 年6 年6 年7 Span #4 #5 #5 #6 #6 #7 5 年6 年7 学7 Deft #5 #5 #6 #6 #7 Deft #5 #5 #6 #7 #7	1.04 1.24 1.44 1.71 (3) .93 1.18 1.42 1.70 2.01	END SPAN	185 240 305* 314* 6.398 184 252 331 359* 368*	0 0 306 373 7.400 161 225 299 338 454 163 214 275 293 7.400 161 225 299 338 346 ^x	142 190 247 234 8.516 141 201 269 318 325 0 0 0 1 305 6 141 201 269 318 3255	124 169 222 256 9.752 123 178 243 300 306 306 306 377 0 0 377 0 377 0 377 306 370 306 370 370 370 370 370 370 370 370 370 370	103 149 200 240° 11.119 106 158 218 279 289° 00 0 0 0 750 0 0 0 0 0 0 0 0 0 0 0 0 0	33 132 179 226* 12.625 92 140 197 254 273* 0 0 0 227 0 0 0 329	73 116 160 205 14.278 78 124 177 230 258* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 127 167 18.067 54 95 142 190 231* 0 0 0 0 247	76 113 150 20.222 44 82 127 172 219*	64 99 135 22.565 71 113 155 207	87 121 25.105 60 100 140 189 0 0 0 0 0 0 0 0	76 108 27.853 50 88 126 172	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n properties, see Table 8.1. turnatud square joste ands; second load is for special tapered joist ands. "Selfection is not norquised above horizonal line (thickness 2.1/18.5. for and spane.	r spans). girdy joists and tapered ends.	capacity $+Capacity$ at elastic deflection = $\ell_0/360$.	FOR DESIGN (CONCRETE .65 CF/SF)	80 1.06 1.24 1.51 80 1.01 1.24 1.44	61 .73 .85 1.04 .55 .70 .85 .99	37 .44 .51 .63 .33 .42 .51 .60	19.2 19.2 19.2 19.1 19.3 19.2 19.2 19.1 18.1 18.4 208 234 260		13 15 17 07 09 11 13 13 15 17 01 10	19.1 15.1 19.1 19.1 19.1 19.2 19.2 19.4 19.1 199 230 265 302 .140 .168 .199 .230
30" Forms + 6" Rib @ 36" cc. ⁽²⁾ FACTORED USABLE SUPERIMPOSED LOAD (PSF) $f_y = 6$	+ 4.5° Top Slab =	파너 파스 파S 파S 파S 파G 파슈 #4 #5 #5 #6 #6 10 8 105 9 105 End 9 11 9 11 9	파도 파도 파요 파요 파고 Span 파4 파도	85 1.04 1.24 1.44 1.71 (3) 93 1.18 1.42 1.70 2.01	END SPAN	185 240 305* 314* 6.398 184 252 331 359* 368*	0 0 306 373 7.400 161 225 299 338 454 163 214 275 293 7.400 161 225 299 338 346 ^x	10 247 274 8.516 141 201 269 318 325* 0 247 274 8.516 141 201 269 318* 325*	124 169 222 256 9.752 123 178 243 300 306 306 306 377 0 0 377 0 377 0 377 306 370 306 370 370 370 370 370 370 370 370 370 370	103 149 200 240° 11.119 106 158 218 279 289° 00 0 0 0 750 0 0 0 0 0 0 0 0 0 0 0 0 0	33 132 179 226* 12.625 92 140 197 254 273* 0 0 0 227 0 0 0 329	73 116 160 205 14.278 78 124 177 230 258* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 127 167 18.067 54 95 142 190 231* 0 0 0 0 247	76 113 150 20.222 44 82 127 172 219*	64 99 135 22.565 71 113 155 207	87 121 25.105 60 100 140 189 0 0 0 0 0 0 0 0	76 108 27.853 50 88 126 172	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	section properties, see Table 8.1. Is for standard square joist ends; second load is for special tapered pist ends. To not required to an explane borizonal line (Thickness 2.1/18.5 for end spane.	interior spans). of bridging joists and tapened ends.	$+$ these capacity $+$ Capacity at elastic detection = $\ell_n/360$.	PROPERTIES FOR DESIGN (CONCRETE .65 CF/SF)	72 90 1.05 1.24 1.51 80 1.01 1.24 1.44	49 .61 .73 .85 1.04 .55 .70 .85 .99	D1 30 37 34 51 63 33 42 51 60	15.4 19.2 19.2 19.2 19.1 19.3 19.2 19.2 19.1 19.1 15.4 15.4 201 23.4 260		02 / 75 / 88 1.04 1.20 51 .62 .75 .88 1 09 .11 .13 .15 .17 .07 .09 .11 .13	19.2 19.1 19.1 19.1 19.1 19.1 19.1 19.1 .108 .199 .230 .265 .302 .140 .168 .199 .230
f _c = 6	+ 4.5° Top Slab =	박식 휴5 ጵ5 ጵ6 #4 #5 #5 #6 #6 8 10.5 9 10.5 End 9 11 9 11 9	(1) 単石 単石 単石 単石 単子 Spain #4 #5 #5 #6 単石 単石 単石 単石 単子 Defi #5 #5 #6 単石 ●7	85 1.04 1.24 1.44 1.71 (3) 93 1.18 1.42 1.70 2.01	PAN END SPAN	185 240 305* 314* 6.398 184 252 331 359* 368*	0 0 306 373 7.400 161 225 299 338 454 163 214 275 293 7.400 161 225 299 338 346 ^x	142 190 247 234 8.516 141 201 269 318 325 0 0 0 1 305 6 141 201 269 318 3255	124 169 222 256 9.752 123 178 243 300 306 306 306 377 0 0 377 0 377 0 377 306 370 306 370 370 370 370 370 370 370 370 370 370	103 149 200 240° 11.119 106 158 218 279 289° 00 0 0 0 750 0 0 0 0 0 0 0 0 0 0 0 0 0	93 132 179 226* 12.625 92 140 197 254 273* 0 0 0 227 0 0 0 329	73 116 160 205 14.278 78 124 177 230 258* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 127 167 18.067 54 95 142 190 231* 0 0 0 0 247	76 113 150 20.222 44 82 127 172 219*	64 99 135 22.565 71 113 155 207	87 121 25.105 60 100 140 189 0 0 0 0 0 0 0 0	76 108 27.853 50 88 126 172	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 For gross section properties, see Table 8.1. For gross factor properties, see Table 8.1. Forst hould far standard square post endois second load is for special tapered joist ende. Comparation of deflection is not required above hontzonal line (thisfendess 2.1.//18.5 for end spane. 	r ₁₀ 22 for interior spans). D Exclusion of bridging gists and tapared ands.	when one of shear capacity $+$ Capacity at elastic deflection = $\ell_0/360$.	PROPERTIES FOR DESIGN (CONCRETE .65 CF/SF)	80 1.06 1.24 1.51 80 1.01 1.24 1.44	49 .61 .73 .85 1.04 .55 .70 .85 .99	D1 30 37 34 51 63 33 42 51 60	19.2 19.2 19.2 19.1 19.3 19.2 19.2 19.1 18.1 18.4 208 234 260		. (5) . (88 1.04 1.20 5.1 6.2 7.5 . (88 1 . (113151707091113	19.1 15.1 19.1 19.1 19.1 19.2 19.2 19.4 19.1 199 230 265 302 .140 .168 .199 .230

CONCRETE REINFORCING STEEL INSTITUTE

Floor System #2: Pre-stressed Pre-cast Concrete Slab

Dead Load = 25^{psf} Live Load = 100^{psf} $w_u = 1.2(25)+1.6(100) = 190^{\text{psf}}$

- 7. Flexural capacity is based on stress/strain strand relationships.
- Maximum moment capacity is critical at midspan for parallel stands and is critical near 0.4 span for draped strands.

				Tab	le oi	Sale	= Su	penn	npos					59.1	l.)							
Centing	Ø M.									:	Spar	in F	eet									
Section	(in. Kips)	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92
34 - 6.6 P	9,405	46	37	30			H.	No.						1			14			1		
34 - 8.6 P	12,117	78	67	58	49	42	35		1		19	1										
34 - 10.6 P	14,586	108	95	83	73	64	56	48	41	35							1					
34 - 12.6 P	16,796	134	120	106	95	84	74	66	58	50	44	38	32									
34 - 14.6 D	21,450	191	173	156	141	127	114	103	93	84	75	67	60	53	47	42	36	31	1		1.1.1	1
34 - 16.6 D	24,293	225	204	185	168	152	138	126	114	104	94	85	77	69	62	56	50	44	39	34	30	22
34 - 18.6 D	26,938	10 10	1.00	212	193	176	160	146	134	122	111	101	92	83	75	67	60	55	51	45	40	36

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17201-0813 717-267-4505 • FAX: 717-267-4518 Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request.

Floor System #3: Post-tensioned Concrete Slab

$F'_c = 4^{ksi}$	2'x2' columns									
Column strip = $\frac{1}{2}$ short span = $30/2 = 15$ '										
Thickness of slab = s 57.5(12)/45 =	pan/depth ratio = 45 = $15.33 = 15.5$ " slab									
Dead Load = $150*(1$	$(5.5/12) = 218.75^{\text{psf}}$	Live Load = 100^{psf}								

N-S:

 $l_1 = 57.5, \qquad l_2 = 30, \qquad l_n = 55.5, \qquad w_o = 318.75^{psf}$

 $M_o = w_o l_2 l_n^2 / 8 = (.318*30*55.5^2) / 8 = 3681.75^{ft-k}$

End Span	Moment
Ext. Neg.	$.65Mo = 2393.2^{ft-k}$
Positive	$.35Mo = 1288.7^{ft-k}$
Int. Neg.	$.65Mo = 2393.2^{ft-k}$

 $S = bd^2/6 = (12*15.52)/6 = 480.5in^3$

$$f_{tmax} = 7.5 * sqrt(f'_c) = .474^{ksi}$$

 $A = 15.5(12) = 186in^2$

 $f_c = .6f_c^2 = 2.4^{ksi}$

 $e_{\min} = (15.5/2) - 1 = 6.75$ "

Support:

$$f_{tmax} = M_o/S - P_e/A - P_e e/S$$
 $f_c = -M_o/S - P_e/A + P_e e/S$

 $.474 = (2393.2(12))/(480.5*28.75) - P_e/(186*28.75) - (P_e*6.75)/(480.5*28.75)$

 $P_e = 2375.67^k$

$$-2.4 = -(2393.2(12))/13814.4 - P_e/5347.5 + (P_e*6.75)/13814.4$$

$$P_e = -1063.3^k$$

Mid-span:

$$\begin{split} f_{tmax} &= M_0/S - P_e/A - P_e e/S & f_c &= -M_0/S - P_e/A + P_e e/S \\ .474 &= (1288.7(12))/13814.4 - P_e/5347.5 - (P_e*6.75)/13814.4 \\ P_e &= 955^k \\ -2.4 &= -(1288.7(12))/13814.4 - P_e/5347.5 + (P_e*6.75)/13814.4 \\ P_e &= -4240.3^k \end{split}$$
 Post-tension:

 $P_{emin} = 2375.7^k$ $P_{ei} = 35^k$
 $P_e/P_{ei} =$ strands
 Strands = 2375.7/35 = 67.9

 68 strands for post-tension
 $P_e = 68*35 = 2380^k -> ok$

$$(30'(12))/68 = 5.3$$
 spacing

E-W:

$l_1 = 30'$	$l_2 = 57.5$	$l_n = 28'$	$w_o = 318.75^{psf}$
$M_o = w_o l_2 l_n^2$	/8 = (.318*57.5*	$(*28^2)/8 = 1791$.9 ^{ft-k}
Int. Support 65% 1164 Mid-span 35% 627.2		M.S. C.S.($(75\%) = 873.6^{\text{ft-k}}$ $(25\%) = 291.2^{\text{ft-k}}$ $(60\%) = 376.3^{\text{ft-k}}$ $(40\%) = 250.8^{\text{ft-k}}$
$S = bd^2/6 = 0$	(12*15.52)/6 = 4	480.5in ³	
$f_{tmax} = 7.5 * sc$	$qrt(f'_c) = .474^{ksi}$		
A = 15.5(12)	$) = 186in^{2}$		
$f_c = .6f'_c = 2$.4 ^{ksi}		
$e_{\min} = (15.5/2)$	2)-1 = 6.75"		

Support:

$$\begin{split} f_{tmax} &= M_o/S - P_e/A - P_e e/S & f_c = -M_o/S - P_e/A + P_e e/S \\ .474 &= (873.6(12))/13814.4 - P_e/5347.5 - (P_e*6.75)/13814.4 \\ P_e &= -79.9^k \\ -2.4 &= -(873.6(12))/13814.4 - P_e/5347.5 + (P_e*6.75)/13814.4 \\ P_e &= -13398^k \\ Mid-span: \\ f_{tmax} &= M_o/S - P_e/A - P_e e/S & f_c &= -M_o/S - P_e/A + P_e e/S \\ .474 &= (376.3(12))/13814.4 - P_e/5347.5 - (P_e*6.75)/13814.4 \end{split}$$

$$P_e = -919.3^k$$

$$-2.4 = -(376.3(12))/13814.4 - P_e/5347.5 + (P_e*6.75)/13814.4$$

 $P_e = -14830.4^k$

No post-tensioning needed.